Applications of Single Cell Sequencing
in Cancer
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Abstract Single cell sequencing (SCS) was chosen as Method of the Year in 2013
by Nature Methods. It refers to the deep sequencing of DNA or RNA molecules of
single cells for the study of genome, transcriptome, noncoding RNA, and protein
sequences encompassed within the single cells of interest. SCS possesses a strong
potential to exert a great impact on biological research due to its unprecedented
opportunity and capability of resolving sequence composition and genetic varia-
tions on single cell basis, which can be further integrated to explain the biological
phenomena at the population or organismal level. During the past few years, SCS
has produced promising results in a number of fields, especially cancer research.
Prior to SCS, tissue sequencing could only analyze a tumor mass or a cancer cell
population as a whole. With methods for single cell isolation, further powered by
molecular level resolution made possible by minute DNA amplification and
nucleotide level resolution made possible by next-generation sequencing, SCS
technologies are becoming robust approaches for the study of cancer genomics and
transcriptomics, and the cancer—normal cell interactions in the microenvironment.
SCS analyses of cancer evolution, for example, have shown the capability of being
able to empirically infer the driver mutations and map the sequential mutation
events during cancer development. Undoubtedly, these novel approaches will
produce profound health benefits. SCS will continue to attract more attention, and
further expansion of its applications in many biological fields is inevitable. This
chapter focuses on SCS methodologies, its existing applications, especially its
capability in reconstructing the evolutionary history of cancer progression and in
profiling cancer transcriptome, and the potential applications expected to come.
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1 Introduction

A normal diploid human genome is composed of ~6 billion bp of nuclear DNA
distributed in 23 pairs of linear chromosomes, forming DNA-protein complexes, or
chromatins, during the interphase of cell cycle. Besides, there are thousands of
copies of mitochondrial genomes (mitogenomes) per cell, each composed of
16,569 bp of deoxynucleotides forming a circular DNA structure. Together, the
nuclear genome and the mitochondrial genome form the basis of the information
reservoir. Through differential expression of ~ 26,000 protein-coding genes [1] and
hundreds, or more, noncoding RNAs, they drive all the biological activities of
human life. As the doctrine of the Central Dogma teaches [2], gene expression is
mediated by transcription of genomic sequences to produce RNA molecules
(mRNA, tRNA, rRNA, and other noncoding RNA) and translation of the
protein-coding mRNA molecules.

All matter in the universe is subject to dynamic environmental impacts. There is
no exception for DNA and RNA molecules. Environmental impacts, including toxic
chemical compounds, radiations, magnetism, reactive oxygen species (ROS), and
many others, may cause DNA/RNA damages. Aberrations in DNA/RNA sequences
are then subject to selection by evolution which constantly occurs in the context of
the environment. Some aberrations, either as small as single base alterations or as
large as deletions or insertions of chromosomal fragments and chromosomal
breakage and rearrangements, are likely to result in cell death. Some aberrations, on
the other hand, may lead to tumorigenesis [3].

One of the most remarkable features of cancer is genome instability, which acts
as a driving force for genetic mutation and plays a key role in wide spectrum
reshuffling of the genomic material [4, 5], eventually causing a tumor mass to
diversify and form a mixture of heterogeneous, aneuploid genomes. During cancer
progression, genomic alterations are recorded as “mutational fingerprints,” which,
in theory, can be traced to reveal the cancer evolutionary history. Through gene
expression, the genomic alterations are carried onto transcriptome and then pro-
teomes, showing abnormal gene expression profile and altered proteomic state,
respectively. Besides cancerous cells, tumors are also composed of infiltrating
normal cells (such as fibroblasts) and immune cells (such as macrophages and
lymphocytes) [6, 7]. Multiple lines of evidence indicate that the complexity of
cancer cannot be fully appreciated by conventional approaches which study cancer
cell population as a whole. With the advances of sequencing technologies, aber-
rations in nucleic acids can now be revealed and analyzed by next-generation
sequencing (NGS) at a large scale [8, 9], and single cell sequencing
(SCS) technologies are becoming the right choice. Then, may cancer genomes in a
tumor be subdivided into subpopulations or subclones? Is SCS able to reveal the
developmental history of a tumor? Moreover, since solid tumors also contain a
number of noncancerous cells and the gene expression of these “normal” cells is
known to be influenced by cancer cells, can SCS provide further insight into how
these cells interact to foster cancer progression? From the technical point of view,
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can SCS compete against other ensemble methods for early detection of cancer?
How far can SCS go to straighten out these issues and help answer the questions?

To maintain cell integrity and help define the boundary of cellular activities,
each single eukaryotic cell has a well-defined cell membrane, which can be directly
observed under an electron microscope. Imaging-based analysis of gene expression
at the single cell level by in situ hybridization followed by imaging had long
preceded PCR and NGS approaches [10, 11]. Automation of Sanger sequencing
together with the invention of PCR by Kary Mullis in 1980s stimulated the
invention of NGS platforms during 2005-2007, which have created a sustainable
state of sequencing-based biological research [12], and are now, by studying single
cells [13], revolutionizing cancer research [14].

Prior to the invention of NGS technologies, tumor evolutionary histories could
be studied by dissecting tumors into subregions based on phenotypical character-
istics or topographical locations, followed by sequencing library preparation using
tissues from subregions, sequencing, and sequence data analysis [15]. With single
cell sequencing technologies, the process can be significantly simplified. Recent
studies have shown that the mutational fingerprints in single cells of the same
tumor, when revealed by SCS, can be interconnected to form lineages of clonal
expansion and the history of cancer evolution [14, 16]. Furthermore, the temporal
order of the mutational fingerprints may also indicate the driver mutations and their
role in cancer progression. Recent researches have also shown that the expression of
cancer-associated genes (e.g., oncogenes, tumor suppressor genes, oncogenic
miRNA, hormone receptor genes, etc.) can now be better understood with single
cell resolution [13, 17]. How they coordinate and interplay with one another will
provide us in-depth understanding of intercellular molecular activities in a cell
population.

2 Single Cell Sequencing and Its Challenges

One cannot fully appreciate the beauty of a technology without knowing the
challenges it has overcome. Indeed, it is much more difficult to conduct single cell
sequencing than tissue sequencing [18], mainly because of the limitation in the
quantity of genetic materials a single cell can provide. Before single molecule
sequencing becomes sophisticated and available for minute DNA sequencing, SCS
technologies have to rely on NGS technologies for sequencing the genetic materials
in single cells. Conventional NGS technologies require bulk genetic materials to
sequence. However, each single cell, even for cancer cells, contains only a minute
quantity (normally at picogram level), with at least three orders of magnitude less
than that required for conventional NGS protocols. This gap can only be filled by
DNA and/or RNA amplification using PCR-based and/or RNA polymerase-based
strategies, especially the former. PCR amplification is crucial for SCS. PCR,
however, may result in bias due to imbalanced amplification efficiency between
amplicons and thus needs to be carefully designed. In fact, this was one of the major
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barriers that hindered the progress of SCS during the past. Furthermore, because
most molecules in a single cell are of low abundance and low copy number, SCS is
extremely vulnerable to fluctuations which may result from genetic material loss,
poor personal skill, or contamination. Thus, the experimental procedure of a SCS
protocol, especially from single cell or nucleus isolation up to DNA/RNA ampli-
fication, has to be well formulated and every step needs to be carefully charac-
terized and optimized when dealing with trace amount of DNA or RNA. Moreover,
sequencing error is also an issue that needs to be taken care of. While heterozygous
alleles have equal chance of being sequenced, sequencing errors are shown at
relatively much lower frequency and can be corrected by sufficient
fold-of-coverage, or, as demonstrated by Kim and Simon, by incorporating the
probability of sequencing error into Bayesian probability test (see below) [19].

2.1 Cells Suitable for Single Cell Sequencing

SCS is suitable for the study of a number of normal and diseased cell types of both
prokaryotes and eukaryotes [20, 21]. These include early-stage embryonic cells,
stem cells, immune cells, rare cells, microbes that cannot be easily cultured, dif-
ferentiated cells, bacteria or virus infected cells, and cancer cells at various stages.
The application of SCS in the study of cancer and normal cells in the
tumor-surrounding microenvironment is of particular interest because of their
complexity and tight association with human disease. Cultured cancer cells are
probably the most accessible cancer cells for researchers, while circulating tumor
cells (CTCs) and intratumor cancer cells require reliable experimental procedure to
isolate. SCS analyses will benefit the diagnosis and help in guiding chemotherapy
and monitoring/following up the progress of treatment.

2.2 Methods for Cancer Cell Isolation

Depending on the conditions of the single cells, a number of methods are available
for single cell isolation. The most commonly used methods are micromanipulation,
flow cytometry, microdissection, single cell labeling, and cell trapping [21].
Recently, an automated system (C1 System by Fluidigm™) for single cell genome
and transcriptome analyses has been made commercially available. It is relatively
easy to isolate single cells from a cell culture or from the blood, because most of
these cells are either already separated or can be separated easily. In this situation,
single cells can be washed, diluted, and isolated by manipulation such as mouth
pipetting under a microscope. Compared to flow-sorting, micromanipulation is
more tedious and may not be suitable for collecting a large number of single cells.
However, micromanipulation is probably the mildest and gentlest approach that can
minimize the impact of harsh conditions such as high pressure produced by flow
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cytometer and thus can preserve the cell integrity. As such, this method is useful for
transcriptome analysis. On the other hand, flow cytometry is probably the most
efficient approach [21]. As mentioned above, since high flow pressure can easily
damage the cell membrane and cause leakage of the cytoplasm and cross-
contamination, precaution has to be taken before using flow cytometer for whole
cell isolation. A short period of cell wash and/or cell culture may be needed. Single
cell trapping which uses a matrix coated with specific molecule(s) is also for
isolating specific cells. It is important to pick single cells that are representative,
healthy, with well-maintained cellular integrity, and free of contamination. The
automated C1 System facilitates single cell genome and transcriptome analyses by
increasing throughput, reducing technical variations, and easing control and com-
parison [22, 23]. However, its potential problem with primer dimers may result in
false positive signals [22]. Moreover, its sensitivity may not be high enough to
detect low abundance transcripts. How to improve these drawbacks seems to be
critical issues for future improvement for the automated single cell instruments.

2.3 Methods for Single Cell Whole Genome Amplification

Whole genome amplification (WGA) is the key for single cell sequencing, no
matter whether it is for exome sequencing or whole genome sequencing of the
single cells. To preserve the original state of the genome by minimizing uneven
amplification is essential for whole genome amplification. This is frequently done
by reducing the number of PCR cycles, preventing PCR by-products, or using
barcodes. Barcodes can not only minimize bias resulted from the differences in
personal skills and experimental procedure, but also allow multiple small samples
to be combined into a larger sample. A number of methods for DNA amplification,
together with their limitations, have been reviewed previously [24]. Here, we
quickly skim through the methods employed by Navin and Hou.

In 2011, Navin and colleagues adopted degenerated oligos to prime single cell
whole genome amplification (DOP-WGA) [14]. Although efficient enough for the
authors to generate reliable datasets for copy number variation (CNV) analysis, this
approach provided only a low coverage (~ 6%), presumably due to the limitation in
the size range of DOG-WGA products. In 2012, Hou and colleagues published the
Multiple Displacement Amplification (MDA) method for single cell whole genome
amplification. In the method, they used the ®29 (Phi29) enzyme to amplify DNA in
linear fashion [16]. The products were subsequently subjected to a fluorometry-based
quantitation procedure which selected quality sequences for further analysis (see
below). This seems to be an efficient approach for single cell genomic amplification
for NGS. However, as drawbacks of the approach, allelic dropout and imbalanced
amplification have been reported [24]. Imbalanced amplification is a common phe-
nomenon for multiplex PCR. Previous studies have indicated that %GC is respon-
sible for these drawbacks. GC pair is stronger than AT pair because, while AT base
pairing is mediated by two hydrogen bonds, GC pairing is mediated by three
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hydrogen bonds. Besides, high GC content favors Z-form conformation [25]. These
properties influence the efficiency of DNA amplification, causing imbalanced PCR
amplifications (especially when a significant number of primer pairs are deployed
across the entire genome [26]), with allelic dropouts being the most severe cases.
Kim and Simon proposed a computational approach to correct potential sequence
errors which may be introduced by multiple displacement amplification to cause
false discovery or allelic dropout, or by sequencing—see Fig. 3.

2.4 NGS DNA Sequencing

Besides genome amplification, next-generation sequencing (NGS), which is cur-
rently the only method able to provide sufficient coverage (sequencing depth) for
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Fig. 1 Comparison between R1 and R2 QV profiles. The M. cyclopis mitochondrial DNA library
was sequenced by MiSeq with 2 x 300 bp paired-end sequencing. The R1 and R2 QV profiles
were then displayed in parallel to indicate the faster decrease in R2 quality
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reliable analysis, is also essential for single cell sequencing. After years of com-
petition since 2005, the Illumina platform has prevailed over the others (e.g., 454
and SOLiD systems) [9]. In terms of single cell sequencing, long reads would be
better for at least most cases. However, R2 quality drops faster than R1, making
250 bp an evident barrier for the current Illumina sequencing technology (Fig. 1).
The faster quality drop for R2 may result from cluster regeneration. Right before R2
sequencing, R1 clusters (i.e., clusters used as the templates for R1 sequencing) are
replaced by their complementary clusters (i.e., R2 clusters made from the com-
plementary strands of the R1 clusters). During the process, some templates in each
cluster may get damaged or degraded, making the cluster less sufficient and thus
more vulnerable to sequencing reactions. Limited read length is a natural phe-
nomenon. By nature, reading of some templates in a cluster may go wrong in any
step of the sequencing reaction. The mistakes accumulate over time, causing the
quality value to drop gradually.

3 Existing Applications

3.1 Genome Sequencing of Individual Cancer Cells

Depending on the original cell type and the developmental stage, cancer cells may
exist as various forms. During cancer progression, cancer cells further diversify in
genomic makeup and function. The heterogeneity of cancer genome presents a
challenge for cancer research. However, at the same time it also provides an
opportunity for the study of intratumor substructure, cancer progression, and cancer
evolution. This is made possible by single cell sequencing, a breakthrough in
next-generation sequencing, of the genomes in the same tumor mass.

The report by Navin and colleagues in 2011 using single nucleus sequencing
(SNS) to study the evolutionary history of human breast cancer marked a break-
through in cancer research [14]. The experimental procedure can be outlined to
include three major steps: isolation of single cancer nuclei by flow-sorting, whole
genome amplification by random priming with degenerated oligonucleotides, and
next-generation sequencing. The sequence reads were then analyzed to resolve
genomic differences in copy number among individual cancer cells (Fig. 2).

The experimental approach was first validated by using single nuclei isolated
from SK-BR-3 cell line, together with a million-cell population control from the
same cell line. After genomic amplification using degenerated oligos in random
priming, they obtained only a low overage (~6x) of the single cell genomes.
However, such level of coverage is sufficient for CNV analysis. In terms of
bioinformatics, the authors designed unique analytical approaches. For example,
instead of using fixed intervals to calculate integer copy number, they used variable
length bins but with uniform expected unique counts, which would correct for
biases that have been reported in WGA. Pileups (over-replicated loci) were found to
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Fig. 2 Single cell genome sequencing reveals the differences in genomic sequences between
single cells. Individual cells, or nuclei, are first collected in separate tubes. Genomic sequences
(chromosomes) are amplified and sequenced. Sequence reads are then mapped against human
genome assembly to identify their locations and sequence variations (e.g., copy number variations,
insertions, deletions, single base alterations, etc.). Cross-comparison on sequence variation of
single cell libraries, if isolated from the same cancer, allows us to reconstitute the evolutionary
history of that cancer

be randomly distributed and sparse so that would not affect the results. In both
single cells and million-cell population control, they found major amplifications in
genes encoding MET, TPD52, ERBB2, and BCAS1 proteins. Deletion in DCC
(deletion in colorectal cancer) gene was also detected in both single and
1-million-cell population of SK-BR-3 cells. These results generated from the
SK-BR-3 cell line allowed them to move forward to study single nuclei isolated
from different sections of breast tumors.

They divided a high-grade (grade III) triple negative (ER™, PR, and Her2")
carcinoma (labeled as T10) into six sections and analyzed 100 single cell nuclei
isolated from these sections. From the study, they identified distinct clonal sub-
populations in the genetically heterogeneous ductal carcinoma. The integer copy
number profiles were built and analyzed to contain 63 % of normal cells and 37 %
tumor cells and infiltrated with leukocytes. By calculating pair-wide distances
between the 100 profiles followed by building a phylogenetic tree using neighbor
joining, four subpopulations were identified, one with flat diploid profile and three
with complex (advanced) genomic structures, suggesting three clonal expansions.
Moreover, their method was able to detect diverse chromosome gains and losses
and discern ‘pseudodiploid’ nuclei in diploid nuclei. Further clonal analysis allowed
the authors to trace the evolutionary history of the cancer from the primary stage to
the metastatic stage. The data further suggested that, differing from gradual models
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of tumor progression, tumors grow by “punctuated” clonal expansion, without
discernible intermediate branching.

The application of single nucleus sequencing in reconstitution of cancer evo-
Iutionary history, which suggested cancer progression mediated by punctuated
clonal expansion, was reviewed [21, 27]. The drawbacks of such copy
number-based approach include low coverage and being unable to reach down to
the nucleotide resolution.

Following the report by Navin et al., Hou and colleagues reported an
MDA-based exome sequencing of single cancer cells [16]. Deviating from copy
number-based SCS analysis, this report presented a pilot study at the single cell
nucleotide level. The single cell nucleotide sequencing is made possible by using
multiple displacement amplification of the whole genome. MDA products are
mostly of high molecular weight (>10 Kb), being able to boost genome coverage.

The MDA method was first tested with two single cells under multicell control
and hgl8 was used as the human genome reference. The coverage was found to
be >15% (mean fold coverage = 18%), and sequences of both single cells covered
more than 90 % of the reference genome, while more than 95 % of the bases in
hg18 were recovered with >15% sequencing depth. WGA failure was found to be
associated with GC content, with failed regions containing higher GC% than the
average 41 % GC content in human genome. The ratio of allele dropout (ADO),
which indicated whether non-amplification occurred in one of the alleles present in
a heterozygous sample and would lead to false negative, was maintained at ~ 11 %.
ADO showed no bias relative to genomic location, and errors of MDA also showed
no preferences on genes or functions.

After testing, the authors applied MDA procedure to study the genes involved in
essential thrombocythemia (ET) evolution. For certain reasons, they conducted
exome sequencing instead of whole genome sequencing. A total of 90 single cells
from an ET patient were sequenced to a mean depth of 30x. After filtering out the
single cells with <70 % coverage, 58 single cells were chosen for further analysis.
These single cells have an average of ~70 % of target bases at >5 depth. They
considered this coverage as sufficient for population variant calling when multiple
single cells have the same variant. Exome sequencing generated SMAFS (somatic
mutant allele frequency spectrum) for evolutionary study. Results indicate that ET
patient carries a distinct set of mutations and a monoclonal origin of ET cancer
cells.

In a parallel study, Xu et al. used single cell exome sequencing to investigate
clear cell renal cell carcinoma (ccRCC) by which they revealed kidney
tumor-specific single nucleotide mutations [28]. Unlike reports by Navin and col-
leagues, no significant clonal subpopulations were identified in their ccRCC cases,
presumably due to the difference in cancer type and origin. This single cell exome
sequencing also revealed single nucleotide mutation characteristic of the kidney
tumor.

Besides the above-mentioned reports, a computational approach for inferring the
evolutionary mutation history of a cancer using single cell sequencing data has also
been reported by Kim and Simon (Fig. 3) [19]. Although the quality of a library is
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Sequence data containing the 18 mutation sites which
wereidentified by exome sequencing of 58 single cells as
key mutations for essential thrombocythemia (ET) was
used for the study (Ref: Hou et al. 2012, Cell 148:873).

More information: Originally, a total of 712 mutation
sites were found, of which 171 sites were located in the
coding regions. Among these 171 sites, 78 were
nonsynonymous mutations. Further analysis identified 18
sites as the key mutations. These are associated with
genes ABCBS, ANAPC1, ARHGAPS, ASNS, DLEC1, DMXL1,
DNAJC17, FAM115C, FRG1, MLL3, NTRK1, PABPC1,
PDE4DIP, RETSAT, SESN2, ST13, TOP1MT, and USP32.

v

Among the total of 1,044 (18 x 58) entries, 45% did not pass QV checking and was excluded from analysis. ‘

v

Build genotype dataset/table by transforming genotypes into integers: 0 for wild type; 1 for
heterozygous mutation; and 2 for homozygous mutation.

¥

Determine likelihood of pairwise temporal order relationship for any two mutation sites using
Bayesian probability approach with minimal spanning tree algorithm. Potential sequence errors
(6.04 x 107 for false discovery (false postive) and 0.4309 for allelic dropout (false negative), as
indicated by Hou et al.) were incorporated in the computation of posterior probability.

¥

Construct mutation tree based on pairwise order relationship. The earliest mutation is positioned as
the rootand the relative distances between the root and other mutation sites represent the time
frame of further mutations.

Fig. 3 Workflow for the construction of evolutionary mutation tree presented by Kim and Simon

influenced by a number of factors such as the make or design of a sequencer,
personal skill, and the quality or the preparation of the material, the forefront quality
control would remove the questionable reads, keeping the sequencing errors in the
qualified reads at low rate, while on the other hand, heterozygous alleles remain
having equal chance to be detected in the sequence reads, making these two types
of sequence variations readily distinguishable from each other. The sequencing
errors can be more easily detected by sufficient coverage (normally set at 30-fold or
above) and then removed by programs, or by incorporating the probability of
sequencing error into computation, as demonstrated by the authors.

3.2 Transcriptome Sequencing

Sometimes transcriptional information of individual cells, instead of a cell popu-
lation, is desired. Obtaining such information relies on single cell transcriptome
(SCT) sequencing and analysis (http://genomebiology.com/2010/11/S1/P8), which
remains a great challenge for current technologies [17].
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Sequencing

Sequence comparison

Fig. 4 Single cell transcriptome sequencing. The profiles of gene expression in single cells can
now be studied by single cell transcriptome sequencing. Basically, the procedure is similar to that
used for transcriptome analysis of a cell population, except that each cell has to be collected
separately and then goes through cell lysis, cDNA synthesis, cDNA amplification, sequencing,
sequence data analysis, and cross-library comparison. To prevent material loss, all reactions are
conducted at very low volume (e.g., a few microliters or less) and wash is also minimized until the
cDNA molecules have been amplified

Indeed, several lines of evidence show that stochastic gene expression is likely to
be a natural phenomenon and thus the gene expression of a tumor or a tissue should
be considered as a combinatorial phenomenon summarized from its constituent
single cell transcriptomes. SCT sequencing is becoming the most advanced
approach for studying gene expression and regulation (Fig. 4), and this line of
application heavily relies on cDNA synthesis. In fact, there were methods for single
cell cDNA synthesis published before NGS became a popular technology for
sequencing. These include the first single cell transcriptome analysis reported by
Eberwine and colleagues in 1992 [12]. Later in 2006, Kurimoto et al. published
another method for microarray-mediated SCT analysis [29]. The first NGS-based
single cell transcriptome sequencing was published in 2009 [13]. In 2012,
Ramskold and colleagues published an elegant method for cDNA synthesis and
amplification [30]. This approach has been commercialized by Clontech to make a
kit called “the SMARTer Ultra Low RNA Kit.” Instead of using oligo-dT as
employed by Tang et al., Ramskold and colleagues used CDS primer, which carries
a VN tail (V stands for ‘non-T” and N stands for ‘any base’) in the 3’ end of the



358 K.P. Chiu

oligo-dT sequence, to prime the first strand cDNA synthesis. The VN tail signifi-
cantly enhances the specificity of priming because the VN tail allows the prime to
“hook” to the last two bases right in front of the polyA tail in the mRNA molecule.
Without the VN tail, the primer would ‘slip’ within the polyA region, resulting in a
significant amount of imprecise priming. The above-mentioned automated single
cell analysis system is an efficient approach, but solely for the study of a limited
number of genes or genomic regions. Similarly, primer dimer is an issue of concern
[22].

Single cells are delicate entities, and thus concerns about the accuracy of SCT
analysis are inevitable. Various potential factors that may cause transcriptional
variations have been, and will continue to be, examined. Indeed, it can be difficult
to identify the factors causing variations in single cell transcriptomes. Some vari-
ations between individual cells may be real, but some may result from differences in
personal technical skills and thus need to be minimized. To minimize the influence
of variability in personal technical skill, it is recommended to increase the number
of SCTs and use internal controls such as housekeeping genes and previously
studied expression patterns of certain genes. For example, in our study of single cell
transcriptomes of MCF-7 breast cancer [31], we used the expression the LDHB
(lactate dehydrogenase) gene, which is known to be completely shutdown in
MCEF-7 cells, as an internal control. As expected, its expression was not detected in
all libraries (data not shown).

4 SCT Protocols Can Be Modified for Various Reasons

Protocols may need to be modified for certain reasons [9]. For example, a protocol
might not have been optimized when it is published. This frequently occurs when it
is published in a hurry by companies trying to catch up market demand. Besides,
taking advantage of its low input requirement, one can adopt single cell sequencing
protocol to generate sufficient amount of input material for a regular sequencer. As
shown in the following section, we can use total RNA or mRNA, instead of single
cells, as the input material for a single cell protocol. By so doing, we bypass the
conventional protocol and use the single cell protocol to rescue the situation when
material is not sufficient for a regular sequencer.

5 Using Different Types of Materials as the Input

Since polyA*-RNA molecules in single cells are the only molecules required for
double-stranded cDNA synthesis, it is reasonable to use either total RNA or mRNA
to replace single cells.
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The majority of RNA molecules are ribosomal RNA (rRNA) and transfer RNA
(tRNA), while mRNA species constitute only ~2 % of the total RNA. The pres-
ence of rRNA and tRNA may reduce the efficiency of cDNA synthesis because of a
number of reactions, including oligo-dT priming, reverse transcription, and PCR
amplification. As such, it is strongly recommended to use mRNA as the starting
material, if the amount of total RNA is sufficient for mRNA isolation. In fact, it has
been empirically demonstrated that mRNA works better than total RNA.

Then, how do we correlate the results produced from mRNA or total RNA with
cell number? Using MCF-7 as an example, each MCF-7 cell expresses about 10 pg
of total RNA. Accordingly, 50 ng of total RNA is equivalent to about 5000 cells,
and 50 ng of mRNA is equivalent to 250,000 (=0.25 million) single cells. One can
calculate and use a certain amount of total RNA or mRNA based on the number of
cells he/she wants to use in the study. Since the total amount of RNA expressed
from a single cell varies across different cell types, it is strongly recommended to
empirically fine-tune this value based on the cell type being used.

Completion of the second PCR amplification marks the junction where the SCT
protocol and other protocols meet. Now the retrieval of mRNA molecular information
from a single cell is completed and preparation of a sequencing library can be initi-
ated. Here, one can determine what sequencing libraries to make: shotgun fragment
sequencing, paired-end (PE) sequencing, or pair-end ditag (PED) sequencing.

6 Future Potential Applications of Single Cell Sequencing

We can expect many more SCS applications to be developed for cancer research in
the near future. Using transcription factor binding site (TFBS) analysis as an
example, there is a strong potential for us to conduct TFBS analysis at the single
cell level. Currently, most cancer researches have been focused on the study of
mutations in cancer-associated genes such as KRAS, TP53, ¢cMYC, etc. Less
attention was paid to in vivo study of how alterations in DNA motifs interact with
transcription factors (TFs) and/or other intracellular proteins, and how a mutation in
TF affects its DNA binding. Will it form complexes with other unexpected pro-
teins? Or, will it bind to different locations in the genome? It would be interesting to
further understand how an altered motif influence TF binding at the single cell level
and how the effects at the single cell level exert a combinatorial effect at the
population level. In theory, one would expect an alteration in DNA motif to result
in a corresponding switch in the interacting protein(s), which may in turn play a role
in tumorigenesis, angiogenesis, and/or metastasis. Empirical SCS data will help to
either prove or disapprove the speculation.
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7 Further Improvements

To enhance SCS data analysis and protocol design, it can be helpful to produce a
virtual population profile through the integration of SCS profiles by statistical
approach. By comparing the virtual population profile with the empirically pro-
duced population profile, we can evaluate and improve the SCS procedure.
Conceivably, protocols for single cell experiments have to be reproducible,
straightforward, and adaptable. However, many protocols do not yet meet these
criteria and need to be optimized.

The progress of biological research heavily relies on the advance of biotech-
nologies. There is no doubt that more innovative SCS approaches will be created in
the near future.
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